Wed Mar 25 12:25:36 CET 2015
|
falloutboy
|
Kommentare (2)
| Stichworte:
Motor
Cooler by design Cranfield University’s Advanced Motorsport Engineering MSc allows students to get closer to Formula 1 through interaction with professionals in the industry, detailed academic courses, a group design project and an individual thesis. One of the 2014 theses looked at evaluating the required air mass flow rate through the sidepods needed to reject the waste heat produced by the F1 powertrains to comply with the new 2014 regulations. Computation fluid dynamics was used to investigate the potential cooling and aerodynamic benefits of five different The 2014 F1 technical regulations concerning powertrains have provided considerable challenges to the engineers regarding the packaging of the cooling system. The addition of a turbocharger has resulted in more required heat rejection to the air flowing through the sidepods. The oil and water cooling requirement for the engine remains relatively the same for the 2014 V6 engine compared with the 2013 V8 engine, but the addition of the charge air cooler results in a much higher requirement of cooling air mass flow. There is also an increase in electronics Designing the most efficient cooler configuration has ample benefits as it affects the three performance differentiators of the 2014 season – power, aerodynamics and reliability. Firstly, effective cooling of the charged air reduces the density of the air going into the cylinder. This allows more molecules of oxygen per unit volume to be reacted and means more fuel can be combusted per cycle, allowing for a higher IMEP. Secondly, the e ective cooling of the air, water and oil will reduce the average operating temperature of the engine and so extend the life of the engine. The reliability and life of all the components in the engine is crucial to the successful operation and racing of the car since only  ve powertrains were allowed per season per driver in 2014. The enlarged sidepods of the 2014 cars provide a major reduction in aerodynamic efficiency of the vehicle as they slow down more air and reduce the clean  ow of air to the rear of the vehicle. It would therefore be of benefit to any team to be able to increase the heat transfer abilities of the cooling systems and reduce the cooling air mass flow rate. The CFD process used a generic sidepod geometry generated in Catia V5, with the five different cooling cores input as finite tubes of What is interesting to note is that Configuration 4 yields the highest heat rejection rate at the car’s maximum velocity of 90m/s. This is due to it having the cooler CAC in front of the warmer radiator, so the absorption of heat into the cooling air is maximised. The pressure drop across the configurations are also of interest because it is no good having a cooling system that rejects the heat but costs a significant internal aerodynamics drag penalty. Now, what is of further importance is to observe what the air is doing after it has left the cooling cores and how this affects the rear of the vehicle. The air velocity uniformity at the sidepod outlet is of concern because it affects the aerodynamics at the rear of the car. The sidepod inlet shape determines the air mass flow distribution and thus the outlet flow condition. The ideal situation would be to have uniform air mass flow distributions through the cooling cores, and no severe pressure gradients at the outlet. Observing the rear of the sidepod (so looking forward towards the outlet) we can see a comparison of the outlet velocity streamlines of each configuration. Rotational flow The vortex exiting on the left (1) is produced from, initially, the flow over the last row of tubes at the bottom of the water radiator The advantage of having a CAC which cools the air down to a lower temperature is that this air has a higher density, and so more molecules of air can be induced by the engine per cycle allowing for improved engine breathing. Graph 3 shows that, in order to achieve the same output power, for a poorer performing CAC, a higher pressure ratio over the compressor would be required. This higher pressure needed to pump this relatively hotter air would require more power from the turbine wheel, and so result in higher back pressure in the exhaust manifold – bad for scavenging, and less energy available for the MGU-H. The overall effective design of the cooling system has a holistic benefit on the F1 package, in so far as aerodynamics and power are concerned. |
Deine Antwort auf "Platzierung/Dimensionierung Motorkühler"